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Abstract. We study a simple model for a neuron function in a collective brain system. The neural net-
work is composed of an uncorrelated configuration model (UCM) for eliminating the degree correlation of
dynamical processes. The interaction of neurons is assumed to be isotropic and idealized. These neuron
dynamics are similar to biological evolution in extremal dynamics with locally isotropic interaction but has
a different time scale. The functioning of neurons takes place as punctuated patterns based on avalanche
dynamics. In our model, the avalanche dynamics of neurons exhibit self-organized criticality which shows
power-law behavior of the avalanche sizes. For a given network, the avalanche dynamic behavior is not
changed with different degree exponents of networks, γ ≥ 2.4 and various refractory periods referred to
the memory effect, Tr. Furthermore, the avalanche size distributions exhibit power-law behavior in a single
scaling region in contrast to other networks. However, return time distributions displaying spatiotemporal
complexity have three characteristic time scaling regimes Thus, we find that UCM may be inefficient for
holding a memory.

PACS. 05.40.Fb Random walks and Levy flights – 05.45.Tp Time series analysis

1 Introduction

The human brain is one of the most complex systems that
operate far from equilibrium, which contains trillions of
neurons. Typical neurons are made up of dendrites, a cell
body, and an axon. Each of these is connected to thou-
sands of other neurons via synapses. Recently, it has been
reported experimentally [1] and theoretically [2,3] that the
functional structure of the neural network are the “scale-
free network” with small-world properties. These show a
greater degree of clustering than random networks with no
correlations, and have positive degree-degree correlation
with assortative mixing. Scale-free networks show a power-
law distribution whose degree is defined by the number of
links per node. Neuronal activities are also found to ex-
hibit a “self-organized criticality (SOC)”, owing to the
fact that the neuronal system is spatially extended with
locally interacting units [4–7]. The concept of SOC was
originally introduced by Bak, Tang, and Wiesenfeld (who
made the BTW model) in 1987 [4]. Nonequilibrium sys-
tems are self-organized in the sense that they reach a criti-
cal state on their own. The critical state was characterized
by a branching process. If the functional network of neu-
rons is in a critical state, it can spontaneously produce
neuronal avalanches the same as those of the sandpile in
the BTW model and generate spatiotemporal patterns of
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activity that can hold a memory of past activity. Lately,
Stauffer et al. [2] studied the “Hopfield model” [8] with
Hebb coupling between neighbours in a Barabási-Albert
(BA) scale-free network [9]. da Silva et al. [10] offered a
simple lattice model for ideal brain functioning similar
to the Bak-Sneppen (BS) model [5] with the memory ef-
fect given by a refractory period, Tr. The refractory pe-
riod is the time it takes for an excitable neuron to be
stimulated and then be ready for stimulus again. Most
recently, the same model was investigated on a small-
world network by Lin and Chen [11], where they used
networks with rewiring probability generated by Watts-
Strogatz [12]. In this paper, according to the scale-free
nature of a functional network, we look at neural net-
works in the human brain as uncorrelated scale-free net-
works named “uncorrelated configuration model (UCM)”
[13] and discuss the simple model for brain functioning the
same as introduced in reference [10]. UCM is a scale-free
network without degree-degree correlations and clustering
correlations. Even though real networks show indeed the
presence of correlations, the reason that the uncorrelated
networks are valuable is that a test dynamical behavior
of the systems with analytic solution is only valid in the
absence of correlations. The purpose of our study is to in-
vestigate the influences of scale-free network topology on
avalanche dynamics and memory effect. We examine the
avalanche size distribution with different degree exponents
of networks, γ and refractory periods, Tr. We illustrate
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first and all return time distribution (RTDs) to investi-
gate spatiotemporal correlation of avalanche dynamics at
any given values, γ and Tr. We find our model displays
power-law behavior of avalanche size. We notice that the
memory effect endowed with refractory time disappears in
all scale-free networks. In addition, all critical basic expo-
nents have the same value as the mean field result. RTDs
show three characteristic scaling regimes instead of sin-
gle power-law behaviour, compared with on lattice and
small-world networks. The avalanche dynamics on scale-
free networks happen frequently at the hub. The hub can
easily receive excitatory input signals leading to its firing
because of having a greater number of neighbors than a
regular lattice case. Thus, the scale-free network may be
inefficient for holding a memory.

2 Model and simulation method

The modeling of this neuron dynamics is based on net-
works. The networks are composed of an uncorrelated ran-
dom scale-free networks. Here, the uncorrelated random
scale-free network is known as the uncorrelated configu-
ration model (UCM) [13]. The algorithm of the previous
mentioned UCM can be elucidated as follows:

1) N -nodes are generated by the static method. 2)
Each node has Nk cells with the degree k satisfying the de-
gree distribution P (k) ∼ k−γ . 3) Two cells are randomly
selected and connected if they are not linked before. We
exclude duplicated connections and self-connections. The
network generated by the UCM is not only fully connected
but also does not have two type correlations, which are
correlations of no two- and three-vertex correlations [13].
Two-vertex correlation is defined as the average number of
the degree per nearest neighbors (NN) of the nodes with
degree, k, which is also called degree-degree correlations,
D̄nn(k). Three-vertex correlations mean the probability
that a node of degree k forms a loop with two NN. Here,
we will refer to three-vertex correlations as clustering cor-
relations [13]. For an uncorrelated property, the following
constraints must be satisfied. The degree per nodes, ki is
subject to the constraint m � ki � N1/2. The number
of minimal degree is fixed at m = 3 to prevent alteration
of dynamics from a dangling node. The other condition is
that the total number of cells is even.

Now, we explain the functional dynamics of neurons as
follows. A typical neuron collects signals with the form of
an action potential from other neurons through dendrites.
The neuron sends out spikes of electrical activity through
an axon, which splits into thousands of branches. At the
end of each branch, a synapse converts the activity from
the axon into electrical effects that inhibit or excite ac-
tivity in the connected neurons. When a neuron receives
excitatory input that is sufficiently large compared with
its inhibitory input, it sends a spike of electrical activity
into the other neurons. As the consequence of a received
signal, the stability of related neurons can be changed. Af-
ter the release of a spike, the neurons require a period of
time to recover. No matter how large the excitatory input
may be, the neuron is not allowed to emit a second spike

during the period, which is called the absolute refractory
period of the neuron. To capture the main features of all
that was stated above, we present the evolution rule of
neuron dynamics as follows: each node of the UCM rep-
resents a neuron and a link between two nodes stands for
a synapse. 1) N neurons with uniform random numbers
between 0 and 1 are distributed over each node. A random
number is associated with a barrier Bi. The barriers are
the standard of stability against firing. 2) At each time
step, the lowest barrier, Bmin is chosen and the neuron
is fired by assigning a new random value between 0 and
1. At the same time, the barrier of nearest neighbors are
allocated new random values between 0 and 1. The modi-
fication of a barrier can be thought of as either the result
of the release of a spike by its own neuron or as the con-
sequence of a received signal that changes the stability of
the neuron. 3) Last, the updated neuron, as a consequence
of firing, is prohibited from firing again during the refrac-
tory period, Tr. However its nearest neighbors can fire at
any moment if they have the lowest barrier. Furthermore,
if a nearest neighbor is fired within a certain time interval
t < Tr, the barrier of the temporarily frozen neuron is also
changed. But it continues to be prohibited to emit a spike
until a time, t > Tr has elapsed.

If this process is iterated the system reaches a critical
stationary state by itself, where all the barriers are above
the Bc barrier, a so-called critical threshold. That is, a
neural system is self organized, without a tuning parame-
ter, into a stationary state. In the critical state, a neuronal
avalanche takes place abruptly in terms of punctuation,
i.e each barrier suffers bursts of activity alternating with
long periods of calm. This model exhibits intermittent dy-
namics which resemble the measured results of the firing
response of a single neuron in a monkey visual cortex [14].
In our model, we do not attempt to give a detailed descrip-
tion of the elements of the brain. Instead, we express each
neuron as a barrier of a uniform random number between
0 and 1 that characterizes its instantaneous probability of
releasing a spike, which is the measure of the instability of
the neuron. The firing occurs only at a neuron with lowest
barrier in time t < Tr. In this paper, we observe that the
system exhibits self-organized criticality.

3 Results

In a stationary state, we consider the branching process of
avalanche dynamics to be unrestricted by network size cor-
rections [15]. The avalanche is always started from the hub
neuron characterized by the node with the largest degree.
All neurons with Bi > B0 are treated as inactive neurons,
where B0 is an auxiliary parameter. The avalanche size of
B0(s) is defined as the number of the firing sequence less
than B0. As B0 → Bc, the avalanche size distribution fol-
lows a power-law behavior P (S) ∼ S−τ with an exponen-
tial cutoff. Figure 1 shows avalanche size distribution for
the B0(γ) avalanche with the degree exponents of the net-
works, γ = 2.1, 2.5, 2.9, 3.0, 4.0, and 5.0 The avalanche size
distribution follows a power-law behavior, P (S) ∼ S−τ(γ)
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Fig. 1. The log-log plot of the probability distribution function
P (s) of the B0(γ) avalanche size as a function of the avalanche
size s at the critical fitness on UCM for γ = 2.1, 2.5, 2.9, 3.0, 4.0,
and 5.0 with N = 10 000, m = 3, and Tr = 1. The criti-
cal threshold barriers are B0 = 0.039, 0.080, 0.121, 0.130, 0.212,
and 0.260 respectively.

extending over a larger regime than other scale-free net-
works such as the Barabási-Albert (BA) network [9] and
the static model introduced by Goh et al. [16]. The more
interesting thing is that the power law behaviors of the
avalanche size distribution do not exhibit crossover be-
tween two different scaling regimes. The avalanche size
distribution shows a short intermediate regime and follows
an exponential decay at the cut-off regime. The absence of
the two regimes in the avalanche size distribution may be
explained by the following two reasons. One of the reasons
is that an average degree 〈k〉 is not fixed with different de-
gree exponent γ as compared with the other static models
by Goh’s algorithm [16], and in addition is increased as
γ gets smaller. The other reason is the absence of the
clustering correlations, C̄(k) as well as degree-degree cor-
relations, D̄nn(k) [13]. Figure 2 presents the basic critical
exponents τ , named avalanche size exponent with differ-
ent γ ,where the increment is 0.1 in 2 < γ < 3 and 0.5
in γ > 3, at a given Tr = 1. As we can observe, the criti-
cal avalanche size exponent is the same as the mean field
result i.e, τ � 1.5 for γ ≥ 2.4. It is difficult to compare
the avalanche size critical exponent τ in the UCM with
the BA network because the avalanche size distribution of
the BA network shows different power-law behavior with
two regimes [17,18]. By chance, the critical thresholds are
very close to each other, fc = 0.086 ± 1 (on UCM) and
fc = 0.089± 2 (on BA) within error bars. Even though it
is not a universal value, fc seems to be a criterion distin-
guishing different avalanche dynamics of γ < 2.4 from the
mean field result of γ ≥ 2.4.

In the lattice and small-world network with low
rewiring probability φ = 0.01, the lévy-flight exponents
and the avalanche size exponents increase according to
the increment of the refractory period Tr, respectively.
Figure 3 illustrates the probability distribution for the
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Fig. 2. Dependence of the avalanche size exponents as a func-
tion of network degree exponents γ with N = 10 000, m = 3,
and Tr = 1.
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Fig. 3. The log-log plot of the probability distribution function
P (s) of the B0(Tr) avalanche size as a function of the avalanche
size s at the critical fitness on UCM from Tr = 1 to Tr = 10
with N = 10 000, m = 3, and γ = 3. The critical threshold
barrier is B0 = 0.13 for all Tr.

avalanche size on UCM with different Tr at a given value,
γ = 3. At the same time, in Figure 4, we demonstrate the
dependency of the exponent τ from 1 to 10 with B0 = 0.13.
All τs are not changed according to varying Tr unlike the
results on lattice or small-world networks [10,11]. In the
lattice, the avalanche dynamics of the firing with a larger
refractory period are propagated further away from the
first firing neuron owing to the fact that the firing is re-
jected during an elapsed time, t < Tr. But in the case
of the scale-free network, in a stationary state, the ac-
tivity frequently revisits the hubs with many neighbors
and related nodes. Accordingly, the firing neuron is not
evolved far from the hub in spite of the large refractory
period. For that reason, memory effects in the form of
refractory time vanish as the hub is growing larger. Sim-
ilarly, in the case of small-world networks, if the rewiring
probability approaches a threshold eliminating memory
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Fig. 4. Dependence of the avalanche size exponents as a func-
tion of refractory periods Tr with N = 10 000, m = 3, and
γ = 3.
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Fig. 5. The log-log plot of the probability distribution function
P (s) of the first return time as a function of the time t at the
critical fitness on UCM with N = 10 000, m = 3 at Tr = 1,
and γ = 3 The solid symbols represent the histogram produced,
using an exponential bin plot.

effect, the exponent τ may also possibly follow the mean-
field value with different Tr.

The probability distribution of first and all return time
are valuable quantities for investigating the spatiotempo-
ral correlation and punctuated pattern [4–7,15]. The first
return time with size t is defined as a separating interval
until subsequent activation from a given active neuron. In
Figure 5, we present first return time distribution (FRTd)
for a fixed values, γ = 3 and Tr = 1. The first return time
distribution does not satisfy power-law behavior contrary
to the lattice case. The power-law behavior of the early
return time region is mostly affected by the dynamics of
the hubs. We note that the interval of power-law regime
in early return time increases with the degree of the hub.
This is because the hubs and nearest neighbors often fire
in the ratio of khub + 1 ,where khub is the degree of the
hub; 〈khub〉 = 45 in Figure 5. The intermediate return
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Fig. 6. The log-log plot of the probability distribution function
P (s) of the all return time as a function of the time t at the
critical fitness on UCM with N = 10 000, m = 3 at Tr = 1, and
γ = 3 The solid symbols represent the histogram generated,
using an exponential bin plot.

time distribution becomes almost constant for all nodes
as N → ∞. The reason for this is that each of the nodes
has an equal probability of becoming reactive again as
there are no correlations for the degrees in UCM. Lastly,
in the long return time regime, the slope shows a expo-
nential decay regime with the cut-off for t → Lξ caused by
the finite size effect of the dangling node, since the diame-
ter, L of scale-free network is very small. All return times
with size t are the elapsed time steps regardless of the in-
termediate firing from firing time t0 = 0 of a given neuron
to time t. In Figure 6, we plot all return time distributions
for fixed values, γ = 3, and Tr = 1. The all return time
distribution(ARTd) is also divided up into three charac-
teristic time scaling regimes. Furthermore, the slope of
each regime is small in early return time regimes like the
lattice model, but the general scaling relation is not sat-
isfied. The spatio-temporal correlations of all avalanche
sizes give rise to the storage of a memory or piece of infor-
mation [19–22]. A large memory effect may be induced by
the scale-invariance. Thus, the absence of scale-invariance
of RTDs implies that the memory effect disappears in the
scale-free structure of neuronal functioning.

4 Conclusion

We have studied a simple model of neuronal function-
ing in the human brain. With the object of comparing to
precedent work, we investigate uncorrelated scale-free net-
works (UCM) as neural networks instead of more compli-
cated networks with correlations. We find that our model
shows a self-organized criticality underlying avalanche dy-
namics. In the process of simulation, our model displays
power-law behaviour of avalanche size without two scal-
ing regimes. At the same time, we find that there are
unchangeable avalanche dynamical behaviours for differ-
ent topologies of the network and various memory effects
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with mean field value. We illustrate that RTDs related
to spatio-temporal correlations do not show single power-
low behaviour. Thus, we can observe that UCM may be
inefficient for holding a memory. In future work, complex
networks that contain contributions from the memory ef-
fect would be required.

The present work has been supported by a research grant of
the Asan Foundation.
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